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Abstract

Recurrent neural networks have recently been shown to have the ability to learn
regular and context-free grammars from examples. We show that while conventional
analog recurrent networks try to form clusters in activation space to represent discrete
states of the grammars during learning, and can be successfulin doing so, the clusters
so formed tend to become unstable as longer andlongertestinput strings are pre-
sented to the network. In this paper, by discretizing both the interna feedback signals
and the external stack, we propose a new method to force recurrent networks to learn
stable states. For training such discrete networks we propose a pseudo-gradient learn-
ing rule. The essence of the learning rule is that in doing gradient descent it makes
use of the gradients of a sigmoid function as heuristic hints in place of thoseof the
hard-limiting function, while still using the discretized values in the feedback update
path and in the operations on the external stack. The new network structure uses iso-
lated discrete points instead of “ cluster clouds’ as its internal representation of states
in activation space. It is shown to have similar capabilities in learning regular and
context-free grammars as the conventional analog recurrent network, but without the
instability problem. The proposed pscudo-gradientlearning rule may also be used as a
basis for training other types of networks which have hard-limiting threshold activation
functions.

1 Introduction

Recurrent neural networks have rccently been investigated in terms of their ability for lcarn-
ing simple grammars [2, 4,5,6. 8,10, 11, 12,15]. i addition, particular types of recurrent




networks have been shown to have the ability to learn context-free grammars by using an
external “continuous stack” [3]. A variety of different network architectures and learning

rules have been proposed. In general, each has been shown empirically to have the capabil-
' ity'to learn different types of simple grammars from examples. in this paper, we consider
the “second-order” recurrent network structurc proposed by Giles et a. in [8} -- henceforth,
this particular model is referred to as the analog second-order network.

A typical analog second-order network is shown in Fig. 1. We have found that higher
order networks are particularly adept at learning grammars when compared to the simple
recurrent network structure (also known as the lman structure [4, 5]) which do not use
product units — this confirms earlier work reported in [8].

We have aso found that in learning a rcgular grammar, the analog second-order network
attempts to form clusters of points in hidden unit activation space as its representation of the
states of the grammar. Once formed, thesc clusters are stable for short strings (strings with
lengths not much longer than the maximunlength of training strings) in the sense that the
hidden unit activations move from one distinct cluster to another as the network follows a
trajectory in hidden unit space. However, it was found that for most of the learned networks,
when sufficiently long strings are presented for testing, thehidden unit activations start to
converge to a single cluster and the origina clusters ultimately becomeindistinguishable| 16].
Similar behavior of recurrent networks with different structureshas been found in different,
contexts[13, 11].

As a typical example of such behavior. I'ig. 2(a)-(c) showthe evolution of hidden unit
activations (by way of two dimensional cross-section plotsfora particular analog second-
order network) duringthe learning phasefor ‘1’omits Grammar #4(the Tomita graimmarisa
commonly used grammar in learning tests). This learning experiment consisted of a network
with 4 hidden units being trained on a data set ol 100 labeled (and randomly chosen) strings
with maximum length 15. So is the “indicator” unit, whose desired activation is close to 1
at the end of legal strings, and 0 otherwise. Theformationof clusters of points as learning
proceeds can clearly be seen. ‘The subsequent extraction of equivalent finite state machines
(by means of clustering methods described in [S, 16]) demonstrates that these clusters indeed
correspond to the network’s internal state representation.

The stability problem emerges as the network is presented with strings much longer
than the maximum length of training strings.l%ig. 2(f) is a plotof tile same ('.1'0ss section
of hidden unit activation space of tile traincdnetworkwhenunlabeled stringsas long as
length 50 are processed for testing. Theinitially well-separated clusters e ventually become
indistinguishable. It is clear that even thoughthe network issuccessfulinforming c.lusters as

its state representation during training, it olten has difliculty in creating stable clusters, i.e.,



in forming clusters such that the activation points for long strings converge to the centers
of each cluster, instead of diverging as observed in our experiments. ‘I’he problem can be
considered as inherent to the internal representation of a network which uses analog values
to represent states, while the states in the underlying state machine are actually discrete.

To achieve stability for long strings, we propose a discrete recurrent network structure
which uses discretization in its feedback links. A pseudo-gradient training method is used to
train the network. For context-free graminars, we use the same structure with an external
discrete stack. In the proposed network, instead of clusters, the states of the network consist
of isolated points in hidden unit activation space, Hence, once formed, the internal state
representation is stable in a manner independent of string length.

The remaining part of the paper is organized as follows: Section 2 introduces the basic
structure of second-order discrete recurrent networks, and Section 3 discusses the pseudo-
gradient training method. Section 4 describes experimental results in learning regular gram-
mars using the discrete recurrent network structure. Section 3 introduces discrete recurrent
networks which use external stacks, and tile pseudo-gradient training algorithm necessary
for such models. Section 6 presents experimental results inlecarning context-free grammars
using the discrete stack model. Section 7 is a brief discussion andSection 8 concludes the
paper.

2 Basic Structure of Discrete Recurrent Networks

A discrete recurrent network can be constructed by simply taking ananalogrecurrent net-
work and adding threshold units to allthe feedback links. Inthe case of second-order
networks, one can represent the structure as two scparat e networks controlled by a gating
switch (IFig. 3) as follows: the network consists ol two 1st order networks with shard hidden
units. The common hidden unit values arc discretized and copied back to both net0 and
netl after each time step, and the input stream acts like a swiltching control to enable or
disable one of the two “subnetworks. ” FIor example, when the currentinputis O, net O is
enabled while netl is disabled. The hidden unit values arc thendecided by the hiddenunit
values from the previous time step weighted by the weights in netO. T'he hidden unit acti-
vation function is the standard sigmoid function, f(x) = ]—;‘;— The discretization function
is defined to be:

0.8 ifz>05
Dlz) = { 0.2 ifz < 0.5, @)

The values 0.2 and 0.8 arc chosen instead of () and 1 herein order to give some power of

influence to each of the current hiddenunit values over the next timestep. A unit with value



0 would eliminate any influence of that unit over the next time step. This is the general
network structure which was used in our first set of experiments.

Note that this representation of a 2nd-order network, as two subnetworks with a gating
fﬁnction, provides insight into the nature of 2nd-order networks in genera, i.e, clear] y they
have greater representational power than a single simple recurrent network, given the same
number of hidden units.

We use A! to denote the analog value of hidden unit i at time step ¢, and St to denote
the discretized value of hidden unit  at time step ¢. w(; is the weight from layer 1, unit j to
layer 2, unit ¢ in netn. m =0orl in thecase Of binary inputs. Hidden unit h§ is chosen to
be a special indicator unit whose activation should be greater than 0.5 at the end of a legal
string, or smaller than 0,5 otherwise. At time t = O, initialize Sy to be 0.8 and all other
S9s to be 0.2, i.e., assume that the null string is a legal string. The nctwork weights are
initialized randomly with a uniform distribution between -1 and 1.

One intuitive suggestion to fixthe stability problem isto replace the analog sigmoid
activation function in each of the hidden units with the threshold function of Equation ( 1).
In this manner, once the network is trained, its representation of states (i.e.. activation
pattern of hidden units) will be stable and the activation points won't diverge {rom these
state representations once they are formed. However, there is no knownmethod to train
such a network, since one can not take the gradient of such activation functions.

An alternative approach would be to train the original analog secon(l-order nctwork as
usual, but to add the discretization function /2{x) in the [cedback links during testing. The
problem with this method is that one dots uot know « priori where the formed clusters from
training will be. Hence, one does not have good discretization values to threshold the analog
values in order for the discretized activations to be reset to acluster center. Experimental
results have confirmed this prediction. lor example, after adding the discretization, the
modified network can not even correctly classily the training set which it has successfully
learned in training. This was verified usingthe Tomita grammar described earlier: after
training, and without the discretization,thenctwork’s classification rate on the training set
was 100%, while with the discretization added the rate became 85%. Ior test sets of longer
strings the rates with discretization were cven worse.

We propose that the discretizationbeincluded during both training and testing using the
formulae below. Note that from the {ormulac one canclearly see that in operational mode,

i.c. when testing, the network is equivalent to anctwork with discretization only:
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(Here «* is the input bit at time step ¢.)

Hence, the sigmoid units can be eliminated during testing to simplify computation.

During training, however, the gradientof the soft sigmoid function is made use of in a
pseudo-gradient method for updating the weights. The next section explains the method in
more detail.

By adding this discretization into the network, one might argue that the capacity of the
net is greatly reduced, since each unit can now take on only 2 distinct values. as opposed to
infinitely many values (at least in theory) inthe case of the undiscretized (analog) networks.
However, in the case of learning discrete state machines, the argument depends on tile defi-
nition of the capacity of the analog network. Since in our experiments in [16],14 out of 15 of
the learned networks had unstable behavior for nontrivial long strings, it is difficult to define
what capacity means for such unstable networks. lence, although in theory a discretized
network (as proposed here) may have a lower capacity than a stable analog network, a stable
discretized network may be more preferable than anunstable analog network independent
of their respective capacities.

3 The Pseudo-Gradient Learning Method

The question now remains as to how to train the discretized networks proposedin the last
section. To this end we propose an approximation to gradient descent which we call the
pseudo-gradient learning rule. During training, at theend of each string {x", z!, ,... ;v[’}thc
mean squared error is calculated as follows (note that L is tile stringlengthand that £l is
the analog indicator value at the end of the string):

[ if “legal”

5= 0 if “illegal).

(h([f - T)?u where ‘U = largel = {
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where -8—35 is what we call the “pseudo-gradicnt” with respect to wi.

~ L ~t
To get the pseudo-gradient. 22o-, pseudo-gradients 22 for all ¢,k need to be calculated
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forward in time at each time step:
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In carrying out the chain rule for the gradient we replace the real gradient %r, which
17

is zero almost everywhere, by the pseudo-gradient %’i‘@; The justification of theuse of the
pseudo-gradient is as follows: suppose wC are standing onone side of the hard threshold
function S(z), at point zo >0, and we wish to go downhill. The real gradient of S(z) would
not give any information since it is zero atxzg. If instead we look at the gradient of the
function f(z), which is positive at zy and increases as Zo— O, it indicates that the downhill
direction is to decrease To, which is also the case in S{z).In addition, the magnitude of
the gradient tells us how closc we are to a step down in S(x). Therefore, we can use that
gradient as a heuristic hint to indicate which direction and how close a step down would be,
This heuristic hint is what we usc as the pscudo-gradientin our gradient update calculation

in Equation (2)

sExperimental Results on Learning Regular Gram-
mars

A regular language can be defined as the language acceptedby its corresponding finite state
acceptor: < ¥, T, to, 6, I >, where

« 2 is the input alphabet.

« T is a finite nonempty set of st ates.

o 1y is the start (or initial) state, anclement 017,
« 6 is the state transition function;é : ‘f" x ¥ — ‘f’.

. I’ is the set of final (or accepting)states,a (possibly empty)subsetof /.



The following grammars were used in the learning experiments described in this section:
« Tomita grammars [14]:

o #1 — 1“.
o #4 — any string not containing “000" as a substring.
0 #5 — an even number of O’'s and an even number of 1 ‘s.

o #7 — 0*170"1~.

« Simple vending machine [1]: ‘The machine takes in 3 types of coins: nickels, dimes
and quarters. Starting from empty, a string of coins is entered into the machine. The
machine “accepts”, i.€., a candy bar may be selected, only if the total amount of money

entered exceeds 30 cents.
« A 10-state machine shown in Fig. 6(b).

A training set consists of randomly chosen variable length strings with length uniformly
distributed between 1 and L.z, Where Ly is the maximum training string length. Fach
string is marked as “legal” or “illegal” according to the underlying grammar.

Table 1 shows the experimental results of training the discrete recurrent network by the
pseudo-gradient learning method onthese gramimars. An epoch is one presentation of the
whole training set to the network. The totalnumberof characters processed is the cumulative
count of all characters in all strings presented tothe network in al trainingepochs.

As a typical example, Fig. 4(a),(h),(c) show thehg —h3 activation-space records of the
learning process of a discretized network (h valuesare the undiscretized values from the
sigmoids). The underlying grammar is again the Tomita Grammar #4. The parameters of
the network and the training set are as listed in'Table 1.

Fig. 4(c) is a run on an unlabeled test string set after learning, where the weights are
fixed. Notice that there are only a finite number of points in the final plot inthe analog
activation h-space due to the discretization. Fig. 4(d) shows the discretized value plot in
SO — S, where only 3 points can be seen. Each point in the discretized activation S-space
is automatically defined as a distinct state and no point is shared by any of the states. The
transition rules are calculated by setting the S!™' units equal to onestate, then applying
an input bit (O or 1 in the binary alphabet case) and calculatingthe values of the S¢ units.
This value corresponds to a pointinS-space and thus is the next state given that particular
input. An internal state machine inthenetworkis thus constructed. or this example, 6
points are found in S-space, so a 6-state-machine is constructed as showninl¥ig. 5(a). Not

surprisingly this machine reduces by Moore's algorithim to an equivalent minimum machine
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with 4 states which is exactly the Tomita Grammar #4 (Fig.5(b)). Similar results were
observed for all the other grammars in the experiments.

Fig. 6(a) shows the extracted automaton from the network trained on the grammar for
the 10-state machine. Again, Moore’'s algorithm reduces this 15-state automaton to the
correct 10-state machine shown in Fig. 6(Db).

5 Discrete Recurrent Networks with External Stacks

Regular grammars are the simplest type of grammar in the Chomsky language hierarchy[9],
and have a one-to-one correspondence with finite state machines. So a network that can
represent any finite state machine is sufficient for representing regular grammars. The next
class of grammars in the hierarchy are called context-free or type 2grammars.They represent
a much wider class of languages than do regular grammars --- finite state machines are not
sufficient enough to represent all such grammars.

The theory of finite automata and formal languages states that there exists a one-to-
one correspondence between context-free languages and pushdown automata. That is, one
needs to have an external stack to operate on besides the finite state machine in order
to represent context-free grammars. By training the network to bchave like a pushdown
automaton we equivalently obtain a finite-state machine with an external stack that accepts
the corresponding context-free grammar.

As in [3], we restrict the scope of context-{ree grammarsbythe following: the alphabet of
the stack symbol is set to bethe same astheinput alphabet, only the currentinput symbol
can be pushed onto the stack, and epsilon transitions (which can make state transitions or
stack actions without reading in a ncwinputsymbol)are not allowed.

[

Shown in Fig. 7 is the structure of a discrete recurrent network with an external stack for
the case of binary input and stack symbols. The primary differences between this structure
and the one proposed in [3] arc that wc have a discrete stack as well asdiscretized units.

In Fig. 7 we have in effect four' 1st-order networks with shared hiddenunits.In addition
to the input symbol which acts as control toenable or disable netO or netl, the current
top-of-stack symbol also acts as a second gating control which enables or disables net2 or
net3. Note that if the stack is empty, then both net2 and net3 arcdisabled, a situation
that does not happen to the netO- netl pair.

As before, the unit hg is defined Lo be the “indicator™ unit, whose activation shiould be
greater than ().5 at the end of a legalstring and smaller than 0.5 otherwise. The last unit,
in this case 2, is singled out to be the “action” unit, whose activation decides what stack

action to take, However, the value ol this activation doesnot get copied back to the next




time step. If h,is greater than a certain value (for the experiments reported here it is set
to 0.6) then the current input symbol is pushed to the stack. If it is smaller than a certain
v.alye (0.4 in our case), then a symbol is popped out of the stack. Otherwise no action is
taken.

The activation functions of the h units and the discretization function of the S units are
the same as defined in Section 2.

The error functions for training networks with stacks to learn context-free grammars are
more complicated than for the simple grammars discussed in Section 4. Several situations
can be encountered during learning, each requiring the use of a different error function. We
start by basing our error functions on those proposed in [3], but there are some significant
differences.

Let hg, h1,..., An be the hidden units of the network, where hq is the “indicator” unit and
hy is the “action” unit. Assume the current string being processed is z°,z!,.... 2", where L
is the string length, and let d' denote the depth of the stack at time step ¢. The different
error functions are as follows:

« If the string is legal and the end of string is reached (without any attempt to pop an
empty stack),

B3 (1 = W)+ () @

This means that for legal strings we want both the indicator unittobeconandthe
stack to be empty.

« If the string is illegal and the end of string is reached (without any attempt to pop an

empty stack),

(4)

- h{;—a’L ifhé’—d">0
0 otherwise.

This means that for illegal strings we want either the stack to be nonempty,or the
indicator unit to be off.

« If the network attempts to pop an empty stack al time step ¢,

- $(1- hi)? = d' if the string is legal .
=10 if thestring is illegdl. (9

This means that for legal strings we want to correct the error of attempting to pop an
empty stack by forcing the action unit value away from O, i.e, avoidthe “pop stack”



action and at the same time encourage the stack to become nonempty. On the other

hand, for illegal strings, we do nothing because the attempt to pop an empty stack is
considered an indication that thestring is illegal.

Das et al have suggested in [3] that by providing the network with a ‘(teacher” or an
“oracle” to give hints, the learning can be sped up significantly. The teacher or oracle works
as follows: there are certain illegal strings which are not prefixes to any legal strings, i.e.,
any symbols that follow such strings do not provide any further information. Henceforth,
wc will call these strings dead strings. The teacher is assumed to have the ability to identify
such strings. Whenever a point is reached in the input string such that no further processing
of the remaining string is necessary, the teacher produces a signal and the learning is halted.
The network is then trained to have another special hidden unit, designated as the “dead
unit”, turn on. After the network has been trained in this way, astring is considered to be
classified as illegal whenever the dead unit is turned on during testing. Theerror functions
have to be modified accordingly.

We found that it is not sufficient to add an error function only for the dead strings and
to keep the other error functions (3)-(5) the same. Ior strings other than the decad strings,
the network needs to be trained to have the dead unit turnoff to avoid confusion. More
specifically, letting h! be the dead unit, we have:

o If the string is legal and the end of string is reached ( without any attempt to pop an
empty stack),

1

EZ;

(1 — Y + (@2 + (1Y),
i.e., wc want the indicator unit to beon,the stack to beemply and the dead unit to
be off.

o If the string is illegal but not a dead string, and the end of st ring is reached (without
any attempt to pop an empty stack),

E—{ h; — dF + %h'f if h{)‘ - d* >0

0 otherwise,

i.e., we want either the stack to benonempty, or the indicator unit to be off, and for
both cases, the dead unitto be off. The dead unit should not be on for such strings

because they could be prefixes to certainlegal strings.
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« If the string up to time step t is a dead string,

L1 - AY)? + (hE)?) if stack is empty

L= ( 1(1 - hY)? if stack is nonempty.

This means we want the dead unit to turn on and either the indicator unit w turn off

or the stack to be nonempty.

« If the dead unit turns on at time step t before any possible signal for a dead string,
1
= 5(”1)2-

We do not want the dead unit to turn on too early since the stringup to thus point
could still be a prefix to certain legal strings.

« If the network attempts to pop an empty stack at time step {, before any possible
signal for a dead string,

(1= h%)? - d'if the string is legal

E= (0 if the string is illegal.

Here we do not try to force the dead unit to turn on or off because it hasbeen behaving,
as desired so far.

As in Section 3, for the case with non-stack networks, the pseudo-gradient method is
again used for training. The pseudo gradients of’ error functionsinweight space concern

both —3—’”,‘,— for allt, k,n,¢,7, and Odj,. for al t,n,¢,j7. Theformer is calculated thesame way
as before To calculate the latter, i.e., the pseudo-gradient of the depth of the stack, we use
the iterative operational equation:
1iff = >01
d' = d'"' + Di(hly), Where Dy(z) = { -1 if ¢+ <0.6
0 otherwisc.
~0 . .
Initially, set 2% = O for dl n, 4,j.
'

After each time step, update:

—t —~—t—1 — 1

od od Ohn o
- Vn,i, .

guwly,  Owp | owp’ i

Here, in place of the gradient of the piece-wise step function DDy, we still use the pscudo-
gradient of the action unit hn. Although the value of the action unit dots not get discretized
and copied back after cach time step, its pscudo-gradient can still he calculated by utilizing
the pseudo-gradients of other hidden units:
~t ~t-1
= f - (Z wiy ), Vi,j,n,t
b, 2 "N g

1




s Experimental Results on Learning Context-Free Gram-
mars

We' experimented with the same grammars as in [3], i.e,
« The parenthesis matching grammar.
« The postfix grammar.
. a™b™.

am+n bmcn.
. an anbm'am .

As in [3], a training set consists of all stringsup to a certain length, withrepeated legal
strings so that there are about half as many legal strings as illegal ones.

Table 2(a) and (b) show the detailed results for experiments with and without hints,
respectively. The numbers in each row arc averages over the successful runs (out of 10
possible successful runs) with different initial conditions --- a successful run is taken to mean
that the network generalizes perfectly for ail string lengths. Thenumber of overfitting runs
indicates the number of times in the 10 runs that the network overfits the data by using
too many internal states and did not generalize. Thenumber 017 non-convergentruns is the
number of times in the 10 runs that the training had not converged after 1000 epochs and
was halted. Note that the number of unsuccessfulrunsare significantly fewer [or the case
with hints than without hints — hence, hints generally 1nprove the reliability of the learning
procedure. It is still an open question as to how to avoidoverfitting in genera by controlling
the size of the derived automaton during learning. It should benoted however that the tile
networks did not overfit the data when hints were provided.

The hidden unit sizes and training set sizes shown in Table 2(a) and (b) are tile minimum
sizes for which generalization could be obtained for each problem - experimentsusing either
less training data or fewer hidden units invariably resulted in less than perfect generalization.

As an example, Fig. 8(a) and (b) show the derived pushdown automata from the networks
after being trained on the parenthesis matching grammar and the a™b" gram imarrespectively.
As before, each state corresponds to onesingle pointin the network’s hidden unit activa-
tion space and the transition rules arc derived similarly: set the S! ' units to cach of the
points(states) in the activation space, give the network dilferent combinations 01" input and

top-of-stack controls, and thus calculate the next state given such input and stack conditions.



Note that for the parenthesis matching grammar, the network finds a pushdown automa-

ton that has one single state. Starting from an empty stack, when the input isa “(”, it
pushes this input onto the stack. When the input is a “)”, it either pops a “(” from the
stack if the top-of-stack is a “(”, or pushes the “)” onto the stack otherwise. Thus, whenever
there are more “)"’s than “(” ‘s, the machine executes a “push stack” operation no matter
what the input symbol is, making the stack nonempty (indicating an illegal string) from this
point on.

Using a discrete network as well as a discrete stack results in tile advantages of a stable
network, and a clear understanding of the operation of the stack. in [3], where a continuous
stack was used, the results show that the trained networks do not aways generalize perfectly.

From the results in Table 2, it can be seen that providing the network with hints can
indeed speed up learning, or even enable the learning of the grammars in cases where the
grammar could not be learned without hints . However, unlike [3], we did not find incremental
presentation of the training data helped in improving the learning, Incremental presentation
means that the network is initially given a small data set consisting of only short strings.
After it has learned the current data set, more strings longer in lengthare added to the
training set until all training strings are learned. We found in our experiments that once
the network finds a configuration to fit the small data set with snort strings, it is sometimes
very hard to drag it away from that configuration to a desired configuration that will fit the
later (longer) strings as well. The training times with and without incremental presentation
of strings are comparable in ourexperiments. The numberslistedin ‘1'able 2(a) and(b)are
of runs with the training data set presented to the network al al once.

We postulate that the reason why incremental learning worked for analog networks but
not for discrete networks is due to the naturc of analog and discrete networks. The analog
network always finds a “soft” solution to a data set, which only has clear decisions{or snort
strings, but is vague on long strings. Thus it is easy for it to “harden” such a solution when
more restrictions about longer strings are enforced. Theresult is a solution whose “hardness”
or decisiveness depends on the maximum length of the training strings. Onthe other hand.
the discrete network always finds a “hard” solution to a data sct which has clear decisions
for strings of any length. once it settles in such a solution it is hard to enforce restrictions
about longer strings which contradict the current solution. So oneimay as well provide all
the restrictions to the network at once. As long as there exists suflicientinformation in the
data set, the resulting solution doesnot dependonthemaximumilength 01 training strings.



sDiscussion

The primary advantages of introducing discretization into recurrent networks can be sum-

"marized as follows:

1. Once the network has successfully learned a state machine from the training set, it's
internal states are stable. The network will always classify input strings correctly,

independent of the lengths of these strings.

2. No manual clustering (as in [8]) is required to extract the state machine explicitly,
since instead of using “cluster clouds” as its state representation, the network forms
distinct, isolated points as states. Each point in activation space is a distinct state
and, hence, the trained network behaves eractly like a state machine.

3. In terms of implementation the discretized recurrent network is easier to implement in
hardware particularly when an external stack is used.

A reasonable question is, given that the training method for the discretized networks does
not use a proper gradient descent algorithm, dots it take longerto train ? It should be noted
that convergence on the training data set has a different meaning in the case of discretized
networks as opposed to the case of analog networks. In the analog case, learning is considered
to have converged when the error for each sample is below a certain error tol erance level. In
the case of disc, etized networks, however, learning is only stoppedand considered to nave
converged when zero error is obtained on all samples in the training set. In the experiments
reported in this paper the analog tolerancelevel was setto 0.2. The discretized networks
took on average 30% longer to train in terms of learning epochs compared to the analog
networks for this specific error tolerance level however, as pointed out already, this meant
perfect training set memorization and test set genera] izationforthe discretized network,
whereas the analog network was often unstable for long strings.

8 Conclusion

In this paper we introduced discrete recurrent networks as a solution to stability problems
with analog networks in learning regular and context- free gramimars.,

As opposed to analog networks, which form “cluster clouds”in activation space to rep-
resent discrete states, the state representation ol our discrete networks consists 017 distinct.
isolated points in activation space, and is stableregardless 01 string length.

To train such discrete networks, we present apscudo-gradient learning method. The
method is heuristically plausible andexperimentalresults show that the network has similar

[




capabilities in learning regular and context-free grammars as the origina analog 2nd-order
net work.

The proposed pseudo-gradient learning method suggests a general approach for training
hétWorks with threshold activation ‘functions.
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training set # of | mean mean #
grammar #of hidden | # of | o of of total
strings | Lmq | units | epochs | epochs | characters
Tomita #1 50 5 4 36.4 334 5205
Tomita #4 100 8 4 766 | 27.0 31712
Tomita #5 100 8 4 64.4 20.7 26662
Tomita #7 100 10 4 138.5 31.1 70774
Vending machine | 365 6 5 231.8 | 224 383165
10-state machine 317 12 8 5798 - - 14315262

Table 1: Experimental results from training the discrete recurrent network on regular gram-
mars. Lmas is the maximum length of training strings. The numbers for epochs and total
characters processed during learning are the average numbers over 5 runs with different
random weight initializations, except for the 10-state machine, for which only one run was
obtained. o is the standard deviation of the epochs over the 5 runs. All runs have perfect
generalization performance, i.e., 100'70 correct on strings of any length.



training set # of mean mean #
grammar # of hidden | N,, | No | N, | # of o of of tolal
strings | Lyaz | UNits epochs | epochs | characters
Parenthesis 46 6 3 0 0 |10 28.8 16.3 5205
Postfix 63 7 4 1 0 9 62.3 17.1 21131
a™b" 32 6 4 2 0 | 8 | 127.3 4.9 16797
a™ e e 120 8 5 2 0 8 63 36.0 7560
an b*cb™a™ 150 7 7 1 698 516520
(a
training set # of mean mean #
grammar # of hidden | N, | N, | Ny | # of o of of total
strings | Lmaz | UNits epochs | epochs | characlers
Parenthesis 180 6 3 o | o [10] 120 10.5 11208
Postfix 371 7 4 4 2 | 4 | 185.8 | 149.0 408464
anbn 760 S 5 — | 1 63 332136
(b)

Table 2: Experimental results from training the discrete recurrent network on contest-free
grammars (a) with hints; (b) without hints. Tile training set and hidden unit columns
indicate the fixed learning parameters for cach grammar. 10 runs with different random
initial weights were carried out for each grammar except for the ™0™ cd™a™ gram mar in (a)
and a™b™ in (b), for which only one run cach was obtained. Ny, thenumber of successful
runs is the number of runs (of’ the 10 possible) for whichthe trained network gencralized
perfectly for strings of any length. The mecans for the epochs and total characters processed
(and the standard deviation for the epochs) were estimated only from the successful runs,
N,, the number of overfitting runs is the number where the network overfitted the data and
did not generalize perfectly. N,, the number of nol~-convergent runs is the number of runs
where the network didnot converge on the training data after 1000 epochs.
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Figure 1: An analog second-order network. Each square unit takes the product of its two
inputs as its output. When the current input is 1, input unit “0” has value O, and input unit
“1” has value 1, and vice versa, The thick circled unit is the indicator unit, whose desired
value is close to 1 when the input is legal and close to O whentheinput isillegal.
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Figure 2: Hidden unit activation plot SO — Sy in learning I'omits grammar #4 (S,is the
x axis). (a)-(e) are plots of al activations on the training data set: (a)during 1st epoch of
training, (b)during 16th epoch of training, (c)during 21st epoch of training, (d)during 31st
epoch of training, (e) after 52 epochs, training succeeds, weights arcfixed, (f) after training,
when tested on a set of maximum length 50.
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Figure 3: A discretized second-order network. Thethick circled unit & is the indicator unit:
h§ >0,5 for legal strings and S§ <0.5 forillegal strings.
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(b)

Figure 5: Extracted state machine from the discretized network afterlearning Tomita gram-
mar #4 (a double circle means “accept” state, a single circle means “reject” state): (a)
6-state machine extracted directly from the discrete activation space. (b) equivalent mini-

mal machine from (a).




(a) (b)

Figure 6: Extracted state machine from the discretized network after learning the 10-state
machine: (a) 14-state machine extracted directly from the discrete activation space, (b)
equivalent minimal 10-state machine of (a). Note that the state structure in (a) and (b) arc
quite similar, for example, states 1 and 6 in (a) are equivalent to 10 in (b), and states 12,
13, and 14 in (a) play a similar role to state 7 in (b).
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Figure 7. A discretized second-order network with anexternalstack. The thick circled unit
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Figure 8: Extracted pushdown automata from the discretized network with an external stack
after learning (a) the parenthesis grammar without hints; (b)the grammar a™b™ with hints.
Double circled means the state has an indicator unit on, So = 0.8: thus a processed string
is legal if the automaton arrives at such a state and if the stack is empty. A dead state
means the state has its dead unit on, 1 = 0.8: a processed string is illegal assoon as the
automaton arrives at such a state. A transition rule is labeled by ‘(x, y,z”, where xstands for
the current input symbol, y stands for the top-of-stack symbol ( “-” means ancmpty stack),
and z stands for the operationtaken on the stack: *PS” mecans push, “PP” i cans pop.




